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ABSTRACT: This article describes how artificial neural networks (ANNs) can be used to
benefit a number of RF and microwave measurement areas including vector network anal-
ysis (VNA). We apply ANNs to model a variety of on-wafer and coaxial VNA calibrations,
including open-short-load-thru (OSLT) and line-reflect-match (LRM), and assess the accu-
racy of the calibrations using these ANN-modeled standards. We find that the ANN models
compare favorably to benchmark calibrations throughout the frequencies they were trained
for. We summarize other current applications of ANNs, including the determination of per-
mittivities of liquids from the reflection coefficient measurements of an open-ended coaxial
probe and the determination of moisture content of wheat from free-space transmission coef-
ficient measurements. We also discuss some potential applications of ANN models related
to power measurements, material characterization, and the comparison of nonlinear vector
network analyzers. © 2002 John Wiley & Sons, Inc. Int J RF and Microwave CAE 12: 3–24, 2002.
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model; network analyzer; standards

1. INTRODUCTION

Artificial neural networks (ANNs) are neuro-
science-inspired computational tools that are
trained using input-output data to generate a
desired mapping from an input stimulus to the
targeted output. ANNs consist of multiple lay-
ers of processing elements called neurons. Each
neuron is linked to other neurons in neighbor-
ing layers by varying coefficients that represent
the strengths of these connections. Learning is
accomplished by adjusting these coefficients until
the network provides output results that meet
prescribed values.

Correspondence to: Jeffrey A. Jargon; e-mail: jargon@
boulder.nist.gov.

ANNs have been applied to such diverse areas
as speech and pattern recognition, financial and
economic forecasting, telecommunications, and
nuclear power plant diagnosis, and have recently
been introduced into the area of microwave
engineering [1]. In particular, researchers have
successfully used ANNs to model microstrip
vias [2], packaging and interconnects [3], spiral
inductors [4], MESFET devices [5], CPW circuit
components [6], effective dielectric constant of
microstrip lines [7], and HBT amplifiers [8], to
name just a few.

In addition to modeling devices and circuits
using simulated data, ANNs also have many
potential applications in the area of RF and
microwave measurements, which is the subject of
this article. Here, we describe how ANNs can be
used to benefit a variety of measurement areas
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including power, material characterization, and
most notably vector network analysis.

Vector network analyzers (VNAs) are one of
the most versatile instruments in the RF and
microwave industry. They can be found in cal-
ibration facilities, research laboratories, design
facilities, and on production lines. VNAs are used
to measure complex scattering parameters of
devices and circuits. Engineers use them to verify
their designs, confirm proper performance, and
diagnose failures. The accuracy of a VNA mea-
surement is highly dependent on its calibration,
which accounts for imperfections in the instru-
ment such as impedance mismatch, loss in the
cables and connectors, the frequency response
of the source and receiver, and directivity, and
cross talk due to signal leakage. There are a
wide variety of calibration methods available to
VNA users, most of which can be classified into
one of two categories depending on the type of
calibration standards used.

The first category makes use of transmission
lines as standards, and includes such calibra-
tion methods as thru-reflect-line (TRL) [9] and
multiline TRL [10]. Multiline TRL is the most
accurate means of VNA calibration and is espe-
cially useful for on-wafer environments, because
the characteristic impedance can be calculated
from dimensional measurements of the standards,
which simply consist of a number of transmis-
sion lines of varying line lengths and a reflective
termination. In an on-wafer environment, the dis-
advantages of this method are that it requires a lot
of real estate on the wafer, due to the numerous
long lines required for an accurate calibration, and
the different lengths of line necessitate changing
the separation between probes during the cal-
ibration process. In a coaxial environment, the
disadvantages are that a large number of expen-
sive airline standards and numerous interconnects
are required.

Consequently, a second category of VNA
calibrations, which makes use of compact and
lumped-element standards, is often preferred.
The most common of these calibrations are the
open-short-load-thru (OSLT) and the line-reflect-
match (LRM) [11] methods. The trade-off is that
these methods tend to be less accurate, because it
is more difficult to calculate the reflection coeffi-
cients of the standards from independent physical
measurements. But, if the compact calibration kits
are characterized using a benchmark calibration,
such as multiline TRL, then it is possible to
perform an accurate lumped-element calibration.

Once the lumped-element standards for a
given calibration kit are characterized, we must
decide whether to develop a model for each
of the standards or to directly use the mea-
surement data obtained from the benchmark
calibration. Recently, we have applied ANNs to
improve the modeling of lumped-element stan-
dards in both on-wafer and coaxial environments
[12–15]. We have shown that ANN models offer a
number of advantages over the use of calibrated-
measurement data files and equivalent circuit
models, namely, the following: (1) they do not
require detailed physical models; (2) calibration
times can be reduced because only a few train-
ing points are required to accurately model the
standards; (3) ANN model descriptions are much
more compact than large measurement files; (4)
ANN models, trained on only a few measurement
points, can be much more accurate than direct
calibrations when limited data are available; and
(5) they are less susceptible to the noise inherent
in measured data.

In this article, we summarize our work in this
area, describing how we have successfully mod-
eled on-wafer OSLT standards, in one case assum-
ing that the standards can be reproduced from
wafer to wafer with little variation, and in another
case where the loads exhibit significant difference
among the wafers studied. We also describe how
we modeled load standards to improve both on-
wafer and coaxial LRM calibrations.

In addition to describing how ANNs can be
used to improve VNA calibrations, we sum-
marize other current applications of ANNs to
RF and microwave measurements. In particular,
we discuss how two groups of researchers have
used ANNs to model the transformation from
measured reflection coefficients to permittivity
values for liquids. We also examine how scientists
have used ANNs to determine the moisture con-
tent of wheat from measurements of microwave
transmission coefficients.

We also discuss some potential applications
of ANNs to RF and microwave power measure-
ments, material characterization, and comparisons
of nonlinear vector network analyzers. Specifically,
we show how ANN models may be used to deter-
mine the complex permittivity of low-loss dielec-
tric materials from measured shifts in resonant
frequency and quality factor using a split-post res-
onator. We illustrate how lengthy measurement
times for microcalorimeter measurements can
possibly be reduced without noticeably degrad-
ing accuracy. Finally, we explore the possibility
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of using ANN models to compare nonlinear vec-
tor network analyzers, where directly comparing
measured parameters is not possible in assessing
instrument accuracy.

2. ARTIFICIAL NEURAL NETWORKS

One popular type of ANN architecture, that was
used in our work, is a feed-forward, three-layer
perceptron structure (MLP3) consisting of an
input layer, a hidden layer, and an output layer,
as shown in Figure 1. The hidden layer allows
complex models of input–output relationships.

ANNs learn relationships among sets of input–
output data that are characteristic of the device or
system under consideration. After the input vec-
tors are presented to the input neurons and out-
put vectors are computed, the ANN outputs are
compared to the desired outputs and errors are
calculated. Error derivatives are then calculated
and summed for each weight, until all of the train-
ing sets have been presented to the network. The
error derivatives are used to update the weights
for the neurons, and training continues until the
errors become no greater than prescribed values.
In Sections 3–6, we have utilized software devel-
oped by Zhang et al. [16] to construct our ANN
models.

3. ON-WAFER OSLT

The OSLT calibration [11] is one of the most
widely used techniques for calibrating VNAs. It is
mainly used with devices that contain coaxial or
waveguide interfaces, but it is also applied often
to on-wafer environments such as microstrip and

Figure 1. Artificial neural network architecture.

coplanar waveguide (CPW). The calibration pro-
cedure consists of a “thru” connection of the
two VNA ports as well as the measurement (on
both ports) of three one-port standards, typi-
cally a nominal open, a nominal short, and a
nominally-matched load. None of these stan-
dards needs to be ideal, but we must know their
reflection coefficients. In practice, our definition
of these reflection-coefficient values is typically
drawn from a model of the standard.

Manufacturers of calibration kits typically pro-
vide a description of the standards based on
equivalent-circuit parameters, known as Cali-
bration Kit Parameters [17, 18], or Calibration
Component Coefficients [19]. These parame-
ters assume single, real values for both load
impedance and characteristic impedance and
describe the open-and short-circuit terminations
as frequency-polynomials of capacitance and
inductance, respectively. With coaxial and waveg-
uide standards, the equivalent circuit approxi-
mations have worked to the satisfaction of most
users, but for on-wafer standards, a recent study
[20] reported errors in scattering parameters of
up to 0.5. Considering that the maximum possible
value for passive devices is a magnitude of 1, such
errors are clearly unacceptable. DeGroot et al.
[21] recently documented the OSLT models and
developed a general description of transmission
lines to express offset reflection standards and
finite-length thru standards that accounts for lossy
environments with complex impedance. However,
implementing this more general description still
requires physical models or measurement data of
each for the individual standards.

Here, we apply ANNs to improve the modeling
of on-wafer OSLT standards used for calibrat-
ing VNAs [12]. The ANNs are trained with
measurement data obtained from a benchmark
multiline TRL calibration. We assess the accuracy
of an OSLT calibration using these ANN-modeled
standards and find that it compares favorably (less
than a 0.02 difference in magnitude) to the bench-
mark multiline TRL calibration over a 40 GHz
bandwidth. We also quantify the training errors
and training times as a function of both the num-
ber of training points and the number of neurons
in the hidden layer.

3.1. Modeling the Standards

In this study, the OSLT and multiline TRL stan-
dards and devices were constructed of CPW
transmission lines fabricated with 1.5 µm thick
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gold conductors evaporated on 500 µm thick
semi-insulating GaAs [22]; the gold center con-
ductor was 73 µm wide and separated from the
ground plane by 49 µm gaps. The five line stan-
dards included a 0.55-mm thru line and four
additional lines that were 2.135, 3.2, 6.565, and
19.695 mm longer. The load standard was fab-
ricated by terminating a 275-µm section of the
CPW with a single 73 µm by 73 µm nickel–
chromium thin-film resistor. All the standards
were measured using on-wafer probes. The OSLT
open circuit was defined by lifting the probe
heads-off the wafer, as recommended by probe
manufacturers. For each standard, we measured
scattering parameters at 192 frequencies from 0.5
to 40 GHz.

Once the OSLT standards had been character-
ized using a multiline TRL calibration, we deter-
mined how many neurons in the hidden layer were
required to develop accurate ANN models. Fig-
ure 2 illustrates the results for S11 of the open,
short, and load, and for S21 of the thru. Each
standard had different errors, but no discernable
improvements could be seen for more than five
neurons.

After we decided that five hidden neurons were
sufficient, we studied how many training points
were required to accurately model each standard.
We trained each standard using all 192 points,

Figure 2. Training error versus the number of neurons in the hidden layer for various
OSLT calibration standards.

and then tried smaller subsets of the measure-
ment points, namely 3, 5, 9, and 41 points. Fig-
ures 3 and 4 show the magnitudes of the vector
differences of S11���S11�� between the measured
data and the ANN models for various numbers
of training points for the open and the load stan-
dards, respectively. From these two plots, we see
that the ANN model of the open standard agrees
with measurement data to within 0.015 using as
few as five training points. We also see that the
ANN model of the load standard agrees with mea-
surement data to within 0.04 for most frequencies
using as few as nine training points.

Our observation that only a few training points
are sufficient to model our standards highlights
an important advantage in using ANN models
over calibrated measurement data files. We found
that it is possible to cut down on calibration times
by measuring only a few frequency points and
developing an ANN model rather than measuring
numerous points and dealing with large data files.
The ANN model, trained on only a few measure-
ment points, can be much more accurate than
linearly interpolating, as is commonly done in
practice. For example, if one were to measure the
load standard at five points and perform linear
interpolation between frequencies, as shown in
Figure 5, then the maximum error would be 0.045,
as opposed to only 0.016 for the ANN model,
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Figure 3. Magnitude of the ANN-modeled reflection coefficient errors (��S11�) for the open
standard with varying numbers of training points.

Figure 4. Magnitude of the ANN-modeled reflection coefficient errors (��S11�) for the load
standard with varying numbers of training points.
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Figure 5. Comparison of magnitude and phase of the
reflection coefficients [�S11� and Arg(S11)] for the load
standard using an ANN model trained with 5 points,
linear interpolation with TRL using the same 5 points,
and TRL with 192 points as the reference.

trained using the same five points. However, it
should be pointed out that using an ANN, trained
on only a few points, works for well-behaved stan-
dards but could be problematic if the standard
contains a resonance.

Next, we developed ANN models for each of
the OSLT standards using five hidden neurons and
all the 192 measured points, because we already
had the data on hand. Figures 6–8 show the mag-
nitude and phase of S11 using both measured and
ANN model data for the open, short, and load
standards, respectively. Figure 9 shows the mag-
nitude and phase of S21 using the measured and
ANN model data for the thru standard. Notice
that the ANN models for each standard follow
the trends of the measured data, but avoid the
scatter of multiline TRL calibrated measurements.
Whether or not this scatter is real, we see that
ANNs follow general trends but omit the scatter,
which is usually desirable in a model as long as the
scatter is less than the repeatability of the mea-

Figure 6. Magnitude and phase of the reflection coef-
ficients [�S11� and Arg(S11)] for the open standard mea-
sured by multiline TRL and ANN modeling.

surements. In Figures 6 and 7, the measured mag-
nitudes of the reflection coefficient for the open
and short standards are slightly greater than 1,
which is not possible for passive devices. This dis-
crepancy can be attributed to random errors in
the TRL calibration, which are typically as high as
0.02 at 40 GHz. Our measurements never exceed
1 by more than this repeatability error. A similar
argument can be made for the transmission coef-
ficients of the thru standard.

3.2. Calibration Comparisons

We performed two OSLT calibrations, one using
the calibrated measurement data of the stan-
dards and the other using the ANN models of the
standards. We calibrated a 19-mm CPW trans-
mission line; using both the OSLT calibrations,
and compared the results to measurements cal-
ibrated directly using the benchmark multiline
TRL calibration. Figure 10 compares the mag-
nitude and phase of the scattering-parameter
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Figure 7. Magnitude and phase of the reflection coef-
ficients [�S11� and Arg(S11)] for the short standard mea-
sured by multiline TRL and ANN modeling.

data ��S11�, Arg�S11�� �S21�, Arg�S21�� for all the
three calibrations. The agreement is remarkably
good.

To get a more quantitative idea of the differ-
ences, we plotted the maximum vector differences
of the scattering parameters ���Sij�� for the 19-
mm line between the two OSLT calibrations and
the multiline TRL calibration. Figure 11 illus-
trates the differences. Not surprisingly, the OSLT
calibration, using the calibrated-measurement
data, compares better to the multiline TRL cali-
bration, because they both make use of the same
calibration data. However, the OSLT using the
ANN models still compares well with less than
a 0.02 difference in magnitude at all frequen-
cies. The difference here does not necessarily
mean that the OSLT, using ANN models, is in
error. The differences could be due to the pres-
ence of noise in the TRL calibration that the
ANN models avoided. Regardless of the source
of error, a 0.02 difference between two on-wafer
calibrations spanning 40 GHz is impressive,
considering that the repeatability between two

Figure 8. Magnitude and phase of the reflection coef-
ficients [�S11� and Arg(S11)] for the load standard mea-
sured by multiline TRL and ANN modeling.

multiline TRL calibrations is usually on the order
of 0.015.

4. ON-WAFER OSLT WITH
VARYING LOADS

The assumption made in the previous section was
that the standards can be reproduced from wafer
to wafer with little variation. Kirby et al. [23] stud-
ied variations in OSLT standards from wafer to
wafer on a CPW calibration set designed for GaAs
substrates, and found that open, short, and thru
standards can be reproduced with minimal vari-
ance, but that load standards exhibit a significance
difference among the wafers they studied. Further-
more, they discovered that RF variations in the
load terminations correlate directly to their mea-
sured DC resistances.

Here, we demonstrate that on-wafer OSLT
calibrations of VNAs can be further improved
by applying ANNs to model the correlation
between DC resistance and RF variations in load
terminations [13]. The ANNs are trained with
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Figure 9. Magnitude and phase of the transmission
coefficients [�S21� and Arg(S21)] for the thru standard
measured by multiline TRL and ANN modeling.

measurement data obtained from a benchmark
multiline TRL calibration. The open, short, and
thru standards do not vary significantly from wafer
to wafer, so we also model these standards using
ANNs trained with calibrated measurement data
chosen from an arbitrary wafer. We assess the
accuracy of five OSLT calibrations with varying
load terminations using the ANN-modeled stan-
dards, and find that they compare favorably (a
difference in magnitude of less than 0.04 at most
frequencies) to the benchmark multiline TRL
calibration over a frequency range of 66 GHz.

4.1. Modeling the Standards

In this study, the OSLT and multiline TRL stan-
dards and devices were constructed of CPW
transmission lines fabricated from 4.5 µm plated
gold on a 625 µm thick GaAs. The load termina-
tions were composed of TiWN (titanium tungsten
nitride) thin film resistive material [23]. The four
line standards included a thru line and three addi-
tional lines that were 0.9552, 1.239, and 1.764 mm
longer. All of the standards were measured using

on-wafer probes. For each standard, we measured
scattering parameters at 165 frequencies from 1
to 67 GHz. The OSLT standards were character-
ized using a multiline TRL calibration with the
reference plane shifted back to the probe-tips.

Because the open, short, and thru standards
did not vary significantly from wafer to wafer, we
modeled these standards with ANNs using cali-
brated measurement data chosen from an arbi-
trary wafer. The ANN architecture for the open,
short, and thru standards consisted of one input
(frequency) and two outputs (the real and imag-
inary components) for each measured scattering
parameter. Because we measured reflection coef-
ficients for the two terminations at both the ports
and all the four scattering parameters of the thru
connection, we ended up with eight ANN mod-
els, excluding the load. From our previous study in
[12], we determined that five neurons were suffi-
cient for the hidden layer. We trained each model
of the standards using all 165 frequencies because
we already had the data on hand.

The ANN architecture for the load stan-
dards consisted of two inputs (frequency and DC
resistance) and two outputs (the real and imagi-
nary components) for the impedance parameters
at each port. Owing to a systematic difference
between the load measurements at port 1 and
port 2, we were unable to generate one model
that included both ports, so we settled on separate
models for each port. Ten neurons were chosen
for the hidden layers because the ANN models for
the loads included an additional input compared
to the other standards. The measured DC resis-
tances for the loads are listed in Table I. For each
port, we trained the models using 3 of the 5 loads.
We chose loads 1, 4, and 5 because load 1 had the
lowest DC resistance, load 5 had the highest, and
load 4 had an intermediate value. It is important
to train ANNs at the expected boundary values of
the input parameter space to ensure good perfor-
mance of the model [1]. By purposely not training
the ANN with loads 2 and 3, we could test how
effectively the model behaved at other DC resis-
tances. Figure 12 shows the real and imaginary
components of port 1 impedance, Z1, of both
measured and ANN-modeled data for the 5 load
standards. Likewise, Figure 13 shows the real and
imaginary components of port 2 impedance, Z2,
of both measured and ANN-modeled data for the
5 load standards. Once again, we see that ANNs
follow general trends while omitting the scatter.
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Figure 10. Magnitude and phase of the scattering parameters of a calibrated 19-mm CPW
transmission line.

Figure 11. Magnitude of the scattering parameter differences (��Sij�) of a calibrated 19-mm
CPW transmission line.
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Figure 12. Real and imaginary components of Z1 for
the load standards measured by multiline TRL and
modeled by an ANN.

4.2. Advantages of ANN Models

One of the advantages of using ANN models as
opposed to calibrated-measurement files is the
compact description possible with an ANN. For
example, the ANN model we developed for the
load at port 1 required 62 real-valued parameters
to generate complex S-parameters as a function
of frequency and DC resistance. In contrast, a
single measurement file contains 495 real-valued
numbers (165 frequency points plus the real and
imaginary components at each point). If a mea-

TABLE I. Measured DC Resistances of the Five
Load Terminations

DC Resistance (�)

Load Port 1 Port 2

1 44.73 45.01
2 45.85 46.13
3 45.20 45.27
4 45.38 45.64
5 46.45 46.71

Figure 13. Real and imaginary components of Z2 for
the load standards measured by multiline TRL and
modeled by an ANN.

surement database of just 5 loads were utilized,
then the combined files would contain 2475
real-valued numbers.

We also explored the use of ANN models for
extrapolation outside the bounds of the training
data. (Generally, it is believed that ANN models
are good at interpolating but not extrapolating.)
We did this by training an ANN model at port 1
using 3 of the 5 loads once again, but this time we
chose loads 2, 3, and 4. By purposely not train-
ing the ANN model with loads 1 and 5, we could
test how effective the model behaved at extrap-
olating. Surprisingly, both the interpolating and
extrapolating ANN models exhibited almost iden-
tical deviations between measured and predicted
values. This predicts well for the application of
ANN models to our loads, because it is conceiv-
able that other wafers may possess DC resistances
slightly outside the range of the 5 loads we used
to train the models.
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4.3. Calibration Comparisons

We performed five OSLT calibrations, each one
making use of the same ANN-modeled open,
short, and thru standards as well as the ANN-
modeled loads with their respective DC resis-
tances. We calibrated a 1.764-mm long CPW
transmission line using each of the OSLT calibra-
tions and compared the results to measurements
calibrated directly using the benchmark multiline
TRL calibration. Figure 14 compares the magni-
tudes of S21 and S11 for all the six calibrations.
The agreement is remarkably good except at a
few points where the multiline TRL calibration
shows a lot of scattering.

To obtain a more quantitative idea of the dif-
ferences, we plotted the maximum magnitude of
the vector differences of the scattering parame-
ters �max��Sij��� for the 1.764-mm line for each of
the OSLT calibrations and the multiline TRL cal-
ibration. Figure 15 illustrates the differences. All
the OSLT calibrations using ANN-modeled stan-
dards compare favorably to the benchmark multi-
line TRL calibration, with a difference of less than
0.04 in magnitude at most of the frequencies over

Figure 14. Magnitudes of S21 and S11 for a calibrated
1.764-mm CPW transmission line.

the 66 GHz frequency range. Not surprisingly, the
OSLT calibrations for loads 2 and 3 show slightly
higher differences because they were not used to
train the ANN model. The differences between
the 5 OSLT calibrations and the TRL calibration
do not necessarily mean that the OSLT calibra-
tions are in error. The differences are likely due
to the presence of noise in the TRL calibration
that the ANN models avoided. Regardless of the
source of error, a 0.04 difference between the two
on-wafer calibrations spanning 66 GHz is impres-
sive, considering that the repeatability between the
two multiline TRL calibrations is usually on the
same order.

5. ON-WAFER LRM

Another popular compact calibration method is
line-reflect-match (LRM), which requires only a
short transmission-line connection, a load, and a
reflection [11]. Here, the reference impedance is
set to that of the standard load. As shown above,
the impedance of many on-wafer loads, however,
is nonideal, which can lead to significant errors in
LRM calibrations.

Here, we modeled a load using an ANN to
improve an on-wafer LRM calibration [15]. The
ANN is trained with measurement data obtained
from a single-line TRL calibration. Using a single-
line TRL calibration enables us to build an effec-
tive model of the load using minimal real estate on
the wafer. This methodology results in an LRM
calibration with less overall error than by simply
applying the single-line TRL calibration [24]. The
accuracy of the LRM calibration using the ANN-
modeled load compares favorably to a benchmark
multiline TRL calibration with an average worst-
case scattering parameter error bound of 0.017
over a 40-GHz frequency range.

5.1. Modeling the Load
In this study, the LRM and multiline TRL stan-
dards and devices were constructed with CPW
transmission lines fabricated from 1.5 µm gold
conductors on a 500 µm thick semi-insulating
GaAs [24]; the gold center conductor 73 µm
wide, and separated from the ground plane by
49 µm gaps. The five line standards included a
0.55-mm thru line and four additional lines that
were 2.135, 3.2, 6.565, and 19.695 mm longer.
All the standards were measured using on-wafer
probes. For each standard, we measured scatter-
ing parameters at 192 frequencies from 0.5 to
40 GHz.
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Figure 15. Magnitudes of the scattering parameter differences of a calibrated 1.764-mm
CPW transmission line.

Figure 16. Magnitude and phase of measured and modeled scattering parameters of the
on-wafer load for the LRM calibration.
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In Figure 16, we plot measurements of magni-
tude and phase of the load’s reflection coefficients.
They were determined by a TRL calibration using
only the thru connection and the 2.135-mm line,
and applying an impedance transformation to
the calibration, which yielded the measured S-
parameters referenced to 50 � [25]. The use
of only a single line explains the inaccuracy at
multiples of 26.65 GHz, where the difference in
line lengths corresponds to a multiple of half
a wavelength [10]. The figure shows that the
load deviates significantly from 50 � over the
frequency range of 40 GHz.

The ANN for the load standard consisted of
one input (frequency) and two outputs (the real
and imaginary components) for the S-parameters.
From previous experience [12], five neurons were
chosen for the hidden layers. Figure 16 shows the
magnitude and phase of the reflection coefficients
of both measured and ANN model data for the
load standard. Notice that the ANN model for the
load standards follows the trends of the measured
data, but avoids the spike near 26.65 GHz as well
as scatter of the TRL calibrated measurements.

5.2. Calibration Comparisons

First, we compare two consecutive multiline TRL
calibrations, using all five lines, to assess the lim-

Figure 17. Worst-case error bounds between measurements of passive devices from on-
wafer LRM and TRL calibrations and the multiline TRL calibrations.

itations on calibration repeatability caused by
contact error and instrument drift. The technique
of [26] was used to determine an upper bound
on this repeatability error. Briefly, the compar-
ison determines the upper bound for �S′

ij − Sij�
for measurements on any passive device, where
S′
ij are the scattering parameters of a device mea-

sured with respect to the first calibration and
Sij are the scattering parameters measured with
respect to the second calibration. The bound
is obtained from a linearization, which assumes
that the two calibrations are similar to the first
order. The result, plotted as a solid curve in Fig-
ure 17, roughly indicates the minimum deviation
between any pair of calibrations. The average of
the worst-case error bounds for repeatability was
0.013.

We then compared the single-line TRL calibra-
tion, which was used to develop the ANN model,
to the multiline TRL calibration. The result is
plotted in Figure 17. Because we used only the
2.135-mm line standard, our calibration accuracy
is poor near multiples of 26.65 GHz. Otherwise,
the single-line TRL calibration is nearly as accu-
rate as the multiline TRL calibration at most
frequencies.

We next assessed the accuracy of the LRM
calibrations by comparing them to a 50 � multi-
line TRL calibration. First, we compare a simple
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LRM calibration, where the load is assumed to
be ideal, and the multiline TRL calibration. Fig-
ure 17 illustrates a large difference because the
reference impedance of the LRM calibration,
which is equal to the impedance of the nonideal
load, deviates significantly from 50 �.

To see how accurate the best LRM calibration
was, we compared the multiline TRL calibration
to the LRM with a fully characterized load, which
involved calibrating the load with the benchmark
multiline TRL calibration and using the calibrated
measurement data file to define the load. This
comparison is once again shown in Figure 17. The
average of the worst-case error bounds for this cal-
ibration was 0.011.

Finally, Figure 17 shows the worst-case error
bounds for the LRM calibration based on the
ANN-modeled load. Here, the average of the
worst-case bounds was 0.017.

6. COAXIAL LRM

We also modeled a coaxial load using an ANN to
improve a coaxial LRM calibration, as shown in
Figure 18 [14]. Just as in Section 5, where we mod-
eled on-wafer LRM calibrations, we compared a
number of calibrations. First, two consecutive mul-
tiline TRL calibrations, using all three airlines,
were compared to assess the limitations on cali-
bration repeatability. The result, plotted as a solid
curve in Figure 19, roughly indicates the mini-
mum deviation between any pair of calibrations.
The average of the worst-case error bounds for
repeatability was 0.013.

We then compared the single-line TRL calibra-
tion to the mutliline TRL calibration. The result
is plotted in Figure 19. Other than the poor accu-
racy near multiples of 6.67 GHz, the single-line
TRL calibration is nearly as accurate as the mul-
tiline TRL calibration at most frequencies.

We next assessed the accuracy of the LRM cal-
ibrations by comparing them to the 50 � multiline
TRL calibration. Figure 19 shows the maximum
possible differences for the simple LRM, the
LRM with the fully characterized load, the LRM
with a circuit-modeled load, and the LRM with
the ANN-modeled load. The average of the
worst-case error bounds for the LRM with the
fully characterized load was 0.016, the average for
the ANN-modeled LRM calibration was 0.024,
and the average for the circuit-modeled LRM
was 0.034.

Figure 18. Real and imaginary components of the
measured and modeled impedance of the coaxial load
for the LRM calibration.

7. OTHER APPLICATIONS

In this section, we summarize other examples
of how ANNs have been applied to RF and
microwave measurements. In particular, we dis-
cuss how two groups of researchers have used
ANNs to model the transformation from mea-
sured reflection coefficients to permittivity values
for liquids. We also examine how scientists have
used ANNs to determine the moisture content
of wheat from microwave transmission coefficient
measurements.

7.1. Permittivity Determination from
Open-ended Coaxial Probes

Open-ended coaxial probes are commonly used
nondestructive tools for measuring the permit-
tivity of dielectric materials. The coaxial probe,
which is connected to a VNA, is pressed against
a sample, and the measured reflection coeffi-
cient is used to determine the permittivity of the
sample. The transformation from reflection coef-
ficient to permittivity requires an accurate model.
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Figure 19. Worst-case error bounds between measurements of passive devices from coaxial
LRM and TRL calibrations and the multiline TRL calibrations.

Several approaches have been taken, including
equivalent-circuit models, variational techniques,
and full-wave analyses [27–29].

Recently, ANNs have been developed as a
means of transforming the measured reflection
coefficients of liquids, using an open-circuited
coaxial probe, to their respective permittivity
values. Two groups of researchers have shown
that this can be done for different sets of fluids.
Figure 20 illustrates the measurement setup.

Tuck and Coad implemented an ANN using
training data from nine different liquids in the

Figure 20. Using an open-ended coaxial probe for
measuring reflection coefficients of liquids.

frequency range of 200 MHz to 16 GHz [30]. In
another study, Bartley et al. [31] implemented an
ANN using training data from eleven liquids (dif-
ferent mixtures of water and isopropyl alcohol) in
the frequency range of 200 MHz to 6 GHz. Both
of these studies suggest that ANNs can be success-
fully applied to determine the dielectric properties
of materials from uncalibrated reflection coeffi-
cient measurements made on an open-ended coax-
ial probe.

7.2. Determining Moisture Content of
Wheat from Transmission
Measurements

Bartley et al. [32] also applied an ANN to
determine the moisture content in wheat from
microwave transmission measurements. The
ANN was trained for moisture contents between
10.6% and 19.2% , which is referred to as “wet
basis,” and bulk densities varying from 0.72 to
0.88 g/cm3. Measurements were made from free-
space transmission-coefficient measurements on
layers of wheat placed between two antennas
connected to a VNA at eight frequencies rang-
ing from 10 to 18 GHz. Figure 21 illustrates the
measurement setup.
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Figure 21. Measuring the free-space transmission
coefficient of a wheat sample placed between two horn
antennas.

The ANN architecture consisted of one hid-
den layer with fifteen neurons. Sixteen inputs (the
magnitudes and phases of each of the eight mea-
sured transmission coefficients) were used for the
ANN model. The one output was moisture con-
tent. For the 179 sample measurements, Bartley
et al. calculated the mean squared error between
the ANN model and the measured results to
be 0.028. Here, the authors point out that this
method has the potential for on-line, nondestruc-
tive moisture content measurement for flowing
grain.

8. POTENTIAL APPLICATIONS

In this section, we discuss some potential appli-
cations of ANN models related to RF and
microwave power measurements and material
characterization. Specifically, we show how ANN
models may be used to determine the complex
permittivity of low-loss dielectric materials from
measured shifts in resonant frequency and qual-
ity factor using a split-post resonator. We also
illustrate how lengthy measurement times for
microcalorimetric measurements can possibly be
reduced without noticeably degrading accuracy.

8.1. Determining Complex Permittivity
Using a Split-Post Resonator

The most accurate way of measuring the com-
plex permittivity of a low-loss dielectric material
is by using one of a number of resonator meth-
ods [33]. Although usually limited to a single fre-
quency, resonators provide the required accuracy
that broadband methods lack. However, the disad-
vantage of most resonator techniques is the need

for accurately machined samples of the material
of interest.

Recently, Krupka et al. [34] introduced a new
type of resonator that allows for nondestruc-
tive permittivity measurements, referred to as
the split-post resonator, shown in Figure 22.
Briefly, the permittivity of a sample is determined
from shifts in the quality factor and resonant
frequency from measurements taken with and
without the sample in place. Krupka et al. utilize
the Rayleigh–Ritz method to theoretically deter-
mine the shift in resonant frequency and quality
factor from the complex permittivity and sample
thickness. Using a wide range of permittivities and
sample thicknesses, they created a look-up table
that is used to calculate the sample permittivity
from measured shifts in resonant frequency and
quality factor for a given sample thickness. For
values that are not explicitly listed in the table,
they interpolate between the two closest values.

Researchers at the National Institute of Stan-
dards and Technology (NIST) are currently
developing an independent mode-matching model
for the split-post resonator to compare with the
method of Krupka et al. In a similar manner
as described above, they will develop a model
to determine the shift in resonant frequency
and quality factor from the complex permittivity
and sample thickness. But rather than creating
a look-up table, they are interested in develop-
ing an ANN model, trained by data from the
mode-matching technique, to provide the com-
plex permittivity for a given sample thickness
from measured shifts in resonant frequency and
quality factor. The ANN will provide an efficient
model for the transformation that would other-
wise be time-consuming using the mode-matching
computations each time.

Figure 22. Cross-sectional diagram of a split-post res-
onator.



Applications of ANNs to Measurements 19

8.2. Microcalorimetric Power
Measurements

The measurement of microwave power is a funda-
mental test requirement necessary for determining
output levels of signal generators, transmitters,
and radar, just to name a few. Invariably, com-
mercial power sensors are ultimately traceable
to measurements made by primary national stan-
dards laboratories, most of which utilize a water-
bath microcalorimeter and a reference standard
for coaxial and waveguide measurements. The
reference standards are usually substitution-type
bolometric power detectors, which use heat sensi-
tive resistors terminating a transmission line that
absorbs microwave power [35].

However, not all the microwave energy inci-
dent on a power detector is absorbed by the
bolometer element. Some of the power is dis-
sipated in the connector, the transmission line,
and the bolometer mounting structure, and some
additional power is lost to leakage in the mount.
These factors result in a dimensionless measure-
ment error called the mount efficiency, which is
always less than one. Additionally, the bolome-
ter elements are not heated identically by the
same amounts of RF and DC power, which is
referred to as the RF-DC substitution error. The
combination of these two errors is defined as
the effective efficiency, which is independent of
mismatch corrections.

Customers who wish their devices to be directly
traceable to a national standards laboratory sub-
mit their devices for calibration. After the mea-
surements are complete, the customer receives
a table of effective efficiencies for the frequen-
cies measured. Because a typical measurement of
360 frequency points requires approximately 48
hours due to the time required for the thermopile
to stabilize at each point, ANNs have the poten-
tial to lessen measurement times by reducing the
number of frequency points. An ANN model,
could in principle, be trained to interpolate the
effective efficiency between a reduced set of mea-
surements, especially for devices that have been
previously measured and are known to behave
correctly, without unpredictably large spikes that
occur over a short frequency span.

Figure 23 shows a typical measurement of
effective efficiency for a coaxial bolometer mount
versus frequency. Here, 360 points were mea-
sured at frequencies ranging from 0.05 to 18
GHz. The effective efficiency decreases monoton-
ically for frequencies above 3 GHz. If we were

to take a conservative approach, then we could
train an ANN to interpolate the values of effec-
tive efficiency between 5 and 18 GHz. Figure 23
shows open circles that represent a reduced set
of 27 measurements between 5 and 18 GHz.
With this subset of measurements, we trained an
ANN and tested it with all of the original mea-
surement points made between 5 and 18 GHz.
The results predicted by the ANN are shown as
small dots in Figure 23. Figure 24 shows the dif-
ferences between the measurements of effective
efficiency and the values predicted by the ANN
model for this subset of frequencies. Also plot-
ted in Figure 24 is the reported uncertainty of
the measurements. It can clearly be seen that the
errors made by the ANN model fall far below the
reported uncertainties. Even by using this conser-
vative approach, we could reduce the calibration
time to one third of its usual duration, thereby
potentially saving money to the customer and
increasing the throughput.

In addition to reducing measurement times for
microcalorimeter measurements without notice-
ably degrading accuracy, ANNs can potentially
be used in other areas where measurement times
are lengthy, such as the determination of noise
parameters.

8.3. Comparing Nonlinear Vector
Network Analyzers

A class of instruments known as nonlinear vector
network analyzers (NVNAs) [36–39] character-
ize nonlinear devices by supplying large-signal
RF stimuli and measuring the resulting signals at
the boundaries of the device under test. Unlike
devices operating in the linear region, nonlin-
ear devices cannot be adequately characterized
by scattering parameters because nonlinearities
transfer energy from the stimulus frequency (or
frequencies) to products at new frequencies.
NVNAs measure incident and reflected wave
variables at stimulus frequencies and their har-
monics (and intermodulation products). As the
exact spectrum of stimuli varies from one instru-
ment to another, measurements made on different
NVNAs cannot be directly compared.

Researchers at NIST are currently developing a
set of nonlinear verification devices and a method
to compare NVNA systems [40]. As mentioned
earlier, because no two systems have identical
stimuli, connections, and port impedances, mea-
sured parameters cannot be directly compared. To
overcome this problem, Remley et al. [40] have
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Figure 23. A typical measurement of effective efficiency for a coaxial bolometer mount
versus frequency.

Figure 24. Differences between measurements of effective efficiency and values predicted
by the ANN model.
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introduced a method where predictive compar-
isons are first carried out for a system between the
measured output and the output from a model
of a given verification device for the same excita-
tion conditions. Then the predictive comparisons
for each system are compared, holding the ver-
ification device model invariant. The difference
between predictive comparisons gives parameters
for checking measurement consistency between
NVNAs.

ANNs have the potential to improve this com-
parison. If an ANN model were trained using
data from a verification device measured on a ref-
erence system for a number of stimuli and port
impedances, then it would be possible to simply
compare the output from another system with the
output predicted by the ANN model applying the
same excitation conditions. The possible use of
ANN models for such an application is currently
being investigated.

9. CONCLUDING REMARKS

We have successfully applied ANNs to model
on-wafer and coaxial lumped-element calibration
standards, and have shown that calibrations that
make use of ANN-modeled standards compare
favorably to benchmark multiline TRL calibra-
tions. In modeling the standards, we quantified
the training errors and training times as a func-
tion of both the number of training points and
the number of neurons in the hidden layer.

In practice, ANN-modeled calibration stan-
dards can be easily implemented using existing or
custom software packages. In our case, we utilized
MultiCal [10], a free program developed by the
National Institute of Standards and Technology,
to perform our multiline TRL and LRM calibra-
tions. The internal software on any commercial
network analyzer can also be used if the user has
confidence in another calibration method. Then,
once the lumped-element standards are mea-
sured, one of a number of ANN programs may
be used to model the standards. We used soft-
ware developed by Zhang et al. [16] to construct
our ANN models. For the OSLT experiments, we
wrote custom software to perform the calibrations
with exported ANN models, using the equations
found in refs. 11 and 21.

We have shown that ANN models offer a
number of advantages over using calibrated mea-
surement data files or equivalent circuit models,
namely:

(1) They do not require detailed physical
models.

(2) Calibration times can be reduced because
only a few training points are required to
accurately model the standards.

(3) ANN model descriptions are much more
compact than large measurement data files.

(4) ANN models, trained on only a few mea-
surement points, can be much more accu-
rate than direct calibrations, when limited
calibration data are available.

(5) They are less susceptible to the noise inher-
ent in measured data.

(6) ANN models are able to accurately model
loads with measured DC resistances slightly
outside their training range.

We have also summarized other current appli-
cations of ANNs to RF and microwave measure-
ments. In particular, we discussed how two groups
of researchers used ANNs to model the transfor-
mation from measured reflection coefficients to
permittivity values for liquids, and we examined
how scientists used ANNs to determine moisture
content of wheat from microwave transmission
coefficient measurements.

We have also discussed some potential appli-
cations of ANN models related to RF and
microwave power measurements and material
characterization. Specifically, we examined how
ANN models may be used to determine the com-
plex permittivity of low-loss dielectric materials
from measured shifts in resonant frequency and
quality factor using a split-post resonator. We also
illustrated how lengthy measurement times for
microcalorimeter measurements could possibly be
reduced without noticeably degrading accuracy.
Finally, we explored the possibility of using ANN
models to compare nonlinear vector network ana-
lyzers, where comparing measured parameters
directly is not practical.
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